Lêer:Mach-Zehnder photons animation.gif
Vanaf testwiki
Gaan na navigasie
Gaan na soektog
Mach-Zehnder_photons_animation.gif (300 × 220 piksels, lêergrootte: 110 KG, MIME-tipe: image/gif, herhalend, 100 rame, 7,0 s)
Hierdie lêer kom vanaf Wikimedia Commons en kan ook in ander projekte gebruik word. Die beskrywing op die lêer se inligtingsblad word hieronder weergegee.
Opsomming
| BeskrywingMach-Zehnder photons animation.gif |
English: Animation of photons in a Mach–Zehnder interferometer. In the empty interferometer each photon interferes with itself. If a detector is placed in the interferometer, the wavefunction will collapse so that the photon is either detected directly or it will move on and split at the second beam splitter without interference. |
| Datum | |
| Bron | Eie werk |
| Outeur | user:Geek3 |
| GIF genesis InfoField |
Source Code
The image is created by the following python source-code. Requirements:
- python
- Matplotlib plotting library
| Python Matplotlib source code |
|---|
#!/usr/bin/python
# -*- coding: utf8 -*-
from math import *
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon, Circle, Wedge
from matplotlib import animation
import numpy as np
# settings
fname = 'Mach-Zehnder_photons_animation'
width, height = 300, 220
nframes = 100
nphotons = 12
fps = 15
x0 = 100.5
x1 = 218.5
y0 = 200.5
y1 = 80.5
lx, lw, lh = 5, 46, 21 # laser
dtect = 62.5
t1, t2, tmove = 0.25, 0.9, 0.025
ymove = 24
rp = 2. # photon radius
cp1 = '#ff0000' # photon color
cp2 = '#ffaaaa' # splitphoton color
##
xstart = lx + lw / 2.
dx = x1 - x0
dy = y1 - y0
l = (x0 - xstart) + abs(dx) + abs(dy) + dtect + 2.*rp
xdet0 = (x0 + x1) / 2
fly_frac = 0.7
v = l / fly_frac
tdet0 = (xdet0 + 2.*rp - xstart) / v
tdet12 = l / v
# introduce artificial antibunching for illustration purpose
ptimes = (np.random.random() + np.sort(np.random.random(3*nphotons))[::3]) % 1
photons = [{} for i in range(nphotons)]
for i, p in enumerate(photons):
p['t0'] = ptimes[i]
if t1 <= (p['t0'] + tdet0) % 1 and (p['t0'] + tdet0) % 1 <= t2:
# photon sees first detector
if np.random.randint(2) == 0:
# photon hits extra detector
p['arm'] = 'none'
p['det'] = 0
else:
# photon escapes first detector
p['arm'] = 'lower'
# => random detection at second beam splitter
if np.random.randint(2) == 0:
p['det'] = 1
else:
p['det'] = 2
else:
# photon sees standard Mach-Zehnder interferometer
p['arm'] = 'both'
p['det'] = 1
if p['det'] == 0:
p['tdet'] = (p['t0'] + tdet0) % 1
else:
p['tdet'] = (p['t0'] + tdet12) % 1
p['click_frame'] = int(round(p['tdet'] * nframes)) % nframes
plt.close('all')
mpl.rc('path', snap=False)
def animate(nframe):
# prepare a clean and image-filling canvas for each frame
plt.clf()
fig.gca().set_position((0, 0, 1, 1))
plt.xlim(0, width)
plt.ylim(0, height)
plt.axis('off')
t = float(nframe) / nframes
# photons
for p in photons:
s0 = v * ((t - p['t0']) % 1)
if s0 > l:
continue
s = s0 + start - x0
if s <= 0:
# from laser to first beam splitter
x, y = x0 + s, y0
fig.gca().add_patch(Circle((x, y), rp, color=cp1))
elif s <= abs(dx) + abs(dy):
# in the interferometer
if s < abs(dx):
xu, yu = x0 + copysign(s, dx), y0
else:
xu, yu = x1, y0 + copysign(s - abs(dx), dy)
if s < abs(dy):
xd, yd = x0, y0 + copysign(s, dy)
else:
xd, yd = x0 + copysign(s - abs(dy), dx), y1
if s < xdet0 - x0 or p['arm'] == 'both':
fig.gca().add_patch(Circle((xu, yu), rp, color=cp2))
fig.gca().add_patch(Circle((xd, yd), rp, color=cp2))
elif p['arm'] == 'lower':
fig.gca().add_patch(Circle((xd, yd), rp, color=cp1))
else:
# after the interferometer
x, y = x1 + (s - abs(dx) - abs(dy)), y1
if p['arm'] == 'both':
fig.gca().add_patch(Circle((x, y), rp, color=cp1))
elif p['arm'] == 'lower':
fig.gca().add_patch(Circle((x, y), rp, color=cp2))
x, y = x1, y1 - (s - abs(dx) - abs(dy))
fig.gca().add_patch(Circle((x, y), rp, color=cp2))
# laser
fig.gca().add_patch(
Polygon([[lx, y0-lh/2.], [lx, y0+lh/2.],
[lx+lw, y0+lh/2.], [lx+lw, y0-lh/2.]],
closed=True, facecolor='#cccccc', edgecolor='black'))
plt.text(lx+lw/2., y0-2, 'laser', fontsize=12,
horizontalalignment='center', verticalalignment='center')
# beam splitters
b = 12
fig.gca().add_patch(
Polygon([[x0-b, y0+b], [x0+b, y0+b], [x0+b, y0-b],
[x0-b, y0-b], [x0-b, y0+b], [x0+b, y0-b]],
closed=True, facecolor='#88aadd', edgecolor='black',
linewidth=2, alpha=0.4))
fig.gca().add_patch(
Polygon([[x1-b, y1+b], [x1+b, y1+b], [x1+b, y1-b],
[x1-b, y1-b], [x1-b, y1+b], [x1+b, y1-b]],
closed=True, facecolor='#88aadd', edgecolor='black',
linewidth=2, alpha=0.4))
# mirrors
m, mw = 12, 4
fig.gca().add_patch(
Polygon([[x1-m+mw/2., y0+m+mw/2.], [x1+m+mw/2., y0-m+mw/2.]],
closed=False, edgecolor='#555555', linewidth=mw))
fig.gca().add_patch(
Polygon([[x0-m-mw/2., y1+m-mw/2.], [x0+m-mw/2., y1-m-mw/2.]],
closed=False, edgecolor='#555555', linewidth=mw))
# detectors
c_off = '#cccccc'
c_on = '#cc0000'
c0 = c1 = c2 = c_off
for p in photons:
if p['click_frame'] == nframe:
if p['det'] == 0: c0 = c_on
if p['det'] == 1: c1 = c_on
if p['det'] == 2: c2 = c_on
if t1 <= t and t <= t2:
yd = y0
else:
yd = y0 - min((t1-t)%1, tmove, (t-t2)%1) * ymove / float(tmove)
fig.gca().add_patch(mpl.patches.Wedge((xdet0, yd), b, 270, 90, fc=c0))
fig.gca().add_patch(mpl.patches.Wedge((x1 + dtect, y1), b, 270, 90, fc=c1))
fig.gca().add_patch(mpl.patches.Wedge((x1, y1 - dtect), b, 180, 0, fc=c2))
fig = plt.figure(figsize=(width/100., height/100.))
anim = animation.FuncAnimation(fig, animate, frames=nframes)
anim.save(fname + '.gif', writer='imagemagick', fps=fps)
|
Postprocessing with gifsicle:
gifsicle -k 64 --background="#ffffff" -O3 --careful -i < Mach-Zehnder_photons_animation.gif > Mach-Zehnder_photons_animation_.gif
Lisensiëring
Ek, die outeursreghouer van hierdie werk, publiseer dit onder die volgende lisensie:
| Toestemming word verleen tot die kopiëring, verspreiding en/of wysiging van hierdie dokument onder die voorwaardes van die GNU-lisensie vir vrye dokumentasie, weergawe 1.2 of enige latere weergawe uitgegee deur die Stigting vir Vrye Sagteware, sonder Invariante Dele, geen Voorbladtekste en geen Agterbladtekste. 'n Kopie van hierdie lisensie is ingesluit in die afdeling getiteld GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
- U is vry:
- om te deel – die werk kopieer, versprei en deurgee
- om te hermeng – om die werk aan te pas
- Onder die volgende voorwaardes:
- naamsvermelding – U moet die nodige krediet gee, 'n skakel na die lisensie verskaf en aandui of daar veranderinge aangebring is. U mag dit op enige redelike manier doen, maar nie op enige manier wat daarop dui dat die lisensiegewer u of u gebruik onderskryf nie.
U kan die lisensie van u keuse kies.
Captions
Add a one-line explanation of what this file represents
Animación 2D de fotones en un interferómetro Mach – Zehnder.
Items portrayed in this file
uitbeelding
22 Augustus 2015
source of file Engels
media type Engels
image/gif
Lêergeskiedenis
Klik op die datum/tyd om te sien hoe die lêer destyds gelyk het.
| Datum/Tyd | Duimnael | Dimensies | Gebruiker | Opmerking | |
|---|---|---|---|---|---|
| huidig | 11:30, 22 Augustus 2015 | 300 × 220 (110 KG) | wikimediacommons>Geek3 | {{Information |Description ={{en|1=Animation of photons in a en:Mach–Zehnder interferometer. In the empty interferometer each photon interferes with itself. If a detector is placed in the... |
Lêergebruik
Die volgende bladsy gebruik dié lêer:
