Lêer:Sphere wireframe.svg
Vanaf testwiki
Gaan na navigasie
Gaan na soektog
Size of this PNG preview of this SVG file: 400 × 400 piksels. Ander resolusies: 240 × 240 piksels | 480 × 480 piksels | 768 × 768 piksels | 1 024 × 1 024 piksels | 2 048 × 2 048 piksels.
Oorspronklike lêer (SVG-lêer, normaalweg 400 × 400 piksels, lêergrootte: 8 KG)
Hierdie lêer kom vanaf Wikimedia Commons en kan ook in ander projekte gebruik word. Die beskrywing op die lêer se inligtingsblad word hieronder weergegee.
Opsomming
| BeskrywingSphere wireframe.svg |
English: Sphere wireframe - orthogonal projection of a sphere. The image shows lines, which are drawn as they were painted onto the surface of a sphere. The angular distance between two lines is 10°. The SVG file is created by the below C++-program, which calculates each edge of a line as an ellipse-bow. The backside of the sphere has an opacity of 0.25. The axis tilt is 52.5°. |
| Datum | |
| Bron | Eie werk |
| Outeur | Geek3 |
| Ander weergawes | Sphere wireframe 10deg 10r.svg |
Source Code
This image can be completely generated by the following source code. If you have the gnu compiler collection installed, the programm can be compiled by the following commands:
g++ sphere_wireframe.cpp -o sphere_wireframe
and run :
./sphere_wireframe > Sphere_wireframe.svg
It creates file Sphere_wireframe.svg in working directory. This file can be viewed using rsvg-view program :
rsvg-view Sphere_wireframe.svg
Here is cpp code in file : sphere_wireframe.cpp
/* sphere - creates a svg vector-graphics file which depicts a wireframe sphere
*
* Copyright (C) 2008 Wikimedia foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to:
* The Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor
* Boston, MA 02110-1301 USA
*/
/* The expressions in this code are not proven to be correct.
* Hence this code probably contains lots of bugs. Be aware! */
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstring>
using namespace std;
const double PI = 3.1415926535897932;
const double DEG = PI / 180.0;
/********************************* settings **********************************/
int n_lon = 18; // number of latitude fields (18 => 10° each)
int n_lat = 18; // half number of longitude fields (18 => 10° each)
double lon_offset = 2.5 * DEG; // offset of the meridians
double w = 52.5 * DEG; // axial tilt (0° => axis is perpendicular to image plane)
double stripe_grad = 0.5 * DEG; // width of each line
int image_size = 400; // width and height of the image in pixels
double back_opacity = 0.25; // opacity of the sphere's backside
char color[] = "#334070"; // color of lines
int istep = 2; // svg code indentation step
/*****************************************************************************/
double sqr(double x)
{
return(x * x);
}
// commands for svg-code:
void indent(int n, bool in_tag = false)
{
n *= istep;
if (in_tag) n += istep + 1;
for (int i = 0; i < n; i++) cout << " ";
}
void M()
{
cout << "M ";
}
void Z()
{
cout << "Z ";
}
void xy(double x, double y)
{
cout << x << ",";
cout << y << " ";
}
void arc(double a, double b, double x_axis_rot, bool large_arc, bool sweep)
{ // draws an elliptic arc
if (b < 0.5E-6)
{ // flat ellipses are not rendered properly => use line
cout << "L ";
}
else
{
cout << "A ";
cout << a << ","; // semi-major axis
cout << b << " "; // semi-minor axis
cout << x_axis_rot << " ";
cout << large_arc << " ";
cout << sweep << " ";
}
}
void circle(bool clockwise)
{
M();
xy(-1, 0);
arc(1, 1, 0, 0, !clockwise);
xy(1, 0);
arc(1, 1, 0, 0, !clockwise);
xy(-1, 0);
Z();
}
void start_svg_file()
{
cout << "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n";
cout << "<svg id=\"Sphere_wireframe\"\n";
cout << " version=\"1.1\"\n";
cout << " baseProfile=\"full\"\n";
cout << " xmlns=\"http://www.w3.org/2000/svg\"\n";
cout << " xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n";
cout << " width=\"" << image_size << "\"\n";
cout << " height=\"" << image_size << "\">\n\n";
cout << " <title>Sphere wireframe</title>\n\n";
cout << " <desc>\n";
cout << " about: http://commons.wikimedia.org/wiki/Image:Sphere_wireframe.svg\n";
cout << " rights: GNU Free Documentation license,\n";
cout << " Creative Commons Attribution ShareAlike license\n";
cout << " </desc>\n\n";
cout << " <g id=\"sphere\" transform=\"scale(" << 0.5 * image_size;
cout << ", " << -0.5 * image_size << ") translate(1, -1)\">\n";
}
void end_svg_file()
{
cout << " </g>\n</svg>\n";
}
int main (int argc, char *argv[])
{
// accept -lat and -lon as parameter
for (int i = 2; i < argc; i++)
{
if (isdigit(argv[i][0]) || (sizeof(argv[i]) > sizeof(char)
&& isdigit(argv[i][1])
&& (argv[i][0] == '.' || argv[i][0] == '-')))
{
if (strcmp(argv[i - 1], "-lon") == 0)
{
lon_offset = atof(argv[i]) * DEG;
}
if (strcmp(argv[i - 1], "-lat") == 0)
{
w = atof(argv[i]) * DEG;
}
}
}
double cosw = cos(w), sinw = sin(w);
double d = 0.5 * stripe_grad;
start_svg_file();
int ind = 2; // initial indentation level
indent(ind);
cout << "<g id=\"sphere_back\" transform=\"rotate(180)\" ";
cout << "opacity=\"" << back_opacity << "\">\n";
indent(++ind);
cout << "<g id=\"sphere_half\">\n";
// meridians
indent(++ind); cout << "<g id=\"meridians\"\n";
indent(ind++, true);
cout << "style=\"stroke:none; fill:" << color << "; fill_rule:evenodd\">\n";
double a = abs(cos(d));
for (int i_lon = 0; i_lon < n_lat; i_lon++)
{ // draw one meridian
double longitude = lon_offset + (i_lon * 180.0 / n_lat) * DEG;
double lon[2];
lon[0] = longitude + d;
lon[1] = longitude - d;
indent(ind);
cout << "<path id=\"meridian";
cout << i_lon << "\"\n";
indent(ind, true);
cout << "d=\"";
double axis_rot = atan2(-1.0 / tan(longitude), cosw);
if (sinw < 0)
axis_rot += PI;
double w2 = sin(longitude) * sinw;
double b = abs(w2 * cos(d));
double sinw1 = sin(d) / sqrt(1.0 - sqr(sin(longitude) * sinw));
if (abs(sinw1) >= 1.0)
{ // stripe covers edge of the circle
double w3 = sqrt(1.0 - sqr(w2)) * sin(d);
circle(false);
// ellipse
M();
xy(sin(axis_rot) * w3 - cos(axis_rot) * a,
-cos(axis_rot) * w3 - sin(axis_rot) * a);
arc(a, b, axis_rot / DEG, 0, 0);
xy(sin(axis_rot) * w3 + cos(axis_rot) * a,
-cos(axis_rot) * w3 + sin(axis_rot) * a);
arc(a, b, axis_rot / DEG, 0, 0);
xy(sin(axis_rot) * w3 - cos(axis_rot) * a,
-cos(axis_rot) * w3 - sin(axis_rot) * a);
Z();
}
else
{ // draw a disrupted ellipse bow
double w1 = asin(sinw1);
M();
xy(-cos(axis_rot + w1), -sin(axis_rot + w1));
arc(a, b, axis_rot / DEG, 1, 0);
xy(cos(axis_rot - w1), sin(axis_rot - w1));
arc(1, 1, 0, 0, 1);
xy(cos(axis_rot + w1), sin(axis_rot + w1));
arc(a, b, axis_rot / DEG, 0, 1);
xy(-cos(axis_rot - w1), -sin(axis_rot - w1));
arc(1, 1, 0, 0, 1);
xy(-cos(axis_rot + w1), -sin(axis_rot + w1));
}
Z();
cout << "\" />\n";
}
indent(--ind); cout << "</g>\n";
cout << endl;
// circles of latitude
indent(ind); cout << "<g id=\"circles_of_latitude\"\n";
indent(ind, true);
cout << "style=\"stroke:none; fill:" << color << "; fill_rule:evenodd\">\n";
ind++;
for (int i_lat = 1; i_lat < n_lon; i_lat++)
{ // draw one circle of latitude
double latitude = (i_lat * 180.0 / n_lon - 90.0) * DEG;
double lat[2];
lat[0] = latitude + d;
lat[1] = latitude - d;
double x[2], yd[2], ym[2];
for (int i = 0; i < 2; i++)
{
x[i] = abs(cos(lat[i]));
yd[i] = abs(cosw * cos(lat[i]));
ym[i] = sinw * sin(lat[i]);
}
double h[4]; // height of each point above image plane
h[0] = sin(lat[0] + w);
h[1] = sin(lat[0] - w);
h[2] = sin(lat[1] + w);
h[3] = sin(lat[1] - w);
if (h[0] > 0 || h[1] > 0 || h[2] > 0 || h[3] > 0)
{ // at least any part visible
indent(ind);
cout << "<path id=\"circle_of_latitude";
cout << i_lat << "\"\n";
indent(ind, true);
cout << "d=\"";
for (int i = 0; i < 2; i++)
{
if ((h[2*i] >= 0 && h[2*i+1] >= 0)
&& (h[2*i] > 0 || h[2*i+1] > 0))
{ // complete ellipse
M();
xy(-x[i], ym[i]); // startpoint
for (int z = 1; z > -2; z -= 2)
{
arc(x[i], yd[i], 0, 1, i);
xy(z * x[i], ym[i]);
}
Z();
if (h[2-2*i] * h[3-2*i] < 0)
{ // partly ellipse + partly circle
double yp = sin(lat[1-i]) / sinw;
double xp = sqrt(1.0 - sqr(yp));
if (sinw < 0)
{
xp = -xp;
}
M();
xy(-xp, yp);
arc(x[1-i], yd[1-i], 0,
sin(lat[1-i]) * cosw > 0, cosw >= 0);
xy(xp, yp);
arc(1, 1, 0, 0, cosw >= 0);
xy(-xp, yp);
Z();
}
else if (h[2-2*i] <= 0 && h[3-2*i] <= 0)
{ // stripe covers edge of the circle
circle(cosw < 0);
}
}
}
if ((h[0] * h[1] < 0 && h[2] <= 0 && h[3] <= 0)
|| (h[0] <= 0 && h[1] <= 0 && h[2] * h[3] < 0))
{
// one slice visible
int i = h[0] <= 0 && h[1] <= 0;
double yp = sin(lat[i]) / sinw;
double xp = sqrt(1.0 - yp * yp);
M();
xy(-xp, yp);
arc(x[i], yd[i], 0, sin(lat[i]) * cosw > 0, cosw * sinw >= 0);
xy(xp, yp);
arc(1, 1, 0, 0, cosw * sinw < 0);
xy(-xp, yp);
Z();
}
else if (h[0] * h[1] < 0 && h[2] * h[3] < 0)
{
// disrupted ellipse bow
double xp[2], yp[2];
for (int i = 0; i < 2; i++)
{
yp[i] = sin(lat[i]) / sinw;
xp[i] = sqrt(1.0 - sqr(yp[i]));
if (sinw < 0) xp[i] = -xp[i];
}
M();
xy(-xp[0], yp[0]);
arc(x[0], yd[0], 0, sin(lat[0]) * cosw > 0, cosw >= 0);
xy(xp[0], yp[0]);
arc(1, 1, 0, 0, 0);
xy(xp[1], yp[1]);
arc(x[1], yd[1], 0, sin(lat[1]) * cosw > 0, cosw < 0);
xy(-xp[1], yp[1]);
arc(1, 1, 0, 0, 0);
xy(-xp[0], yp[0]);
Z();
}
cout << "\" />\n";
}
}
for (int i = 0; i < 3; i++)
{
indent(--ind);
cout << "</g>\n";
}
indent(ind--);
cout << "<use id=\"sphere_front\" xlink:href=\"#sphere_half\" />\n";
end_svg_file();
}
Lisensiëring
Ek, die outeursreghouer van hierdie werk, publiseer dit onder die volgende lisensie:
| Toestemming word verleen tot die kopiëring, verspreiding en/of wysiging van hierdie dokument onder die voorwaardes van die GNU-lisensie vir vrye dokumentasie, weergawe 1.2 of enige latere weergawe uitgegee deur die Stigting vir Vrye Sagteware, sonder Invariante Dele, geen Voorbladtekste en geen Agterbladtekste. 'n Kopie van hierdie lisensie is ingesluit in die afdeling getiteld GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic license.
- U is vry:
- om te deel – die werk kopieer, versprei en deurgee
- om te hermeng – om die werk aan te pas
- Onder die volgende voorwaardes:
- naamsvermelding – U moet die nodige krediet gee, 'n skakel na die lisensie verskaf en aandui of daar veranderinge aangebring is. U mag dit op enige redelike manier doen, maar nie op enige manier wat daarop dui dat die lisensiegewer u of u gebruik onderskryf nie.
- insgelyks – As u die materiaal hermix, transformeer of voortbou, moet u u bydraes versprei onder die dieselfde of versoenbare lisensie as die oorspronklike.
U kan die lisensie van u keuse kies.
Captions
Add a one-line explanation of what this file represents
Items portrayed in this file
uitbeelding
some value
source of file Engels
November 2008
Lêergeskiedenis
Klik op die datum/tyd om te sien hoe die lêer destyds gelyk het.
| Datum/Tyd | Duimnael | Dimensies | Gebruiker | Opmerking | |
|---|---|---|---|---|---|
| huidig | 17:10, 23 November 2008 | 400 × 400 (8 KG) | wikimediacommons>Geek3 | {{Information |Description={{en|1=Sphere wireframe - the image shows lines, which are drawn as they were painted onto the surface of a sphere. The distance between two lines is 10°. The svg file is created by the below c++-program, which calculates each |
Lêergebruik
Die volgende bladsy gebruik dié lêer: