Lys van integrale van irrasionale funksies

Vanaf testwiki
Gaan na navigasie Gaan na soektog

Hier volg 'n lys van integrale (anti-afgeleide funksies) van irassionale funksies. Vir 'n volledige lys van integraalfunksies, sien lys van integrale. In hierdie artikel word die konstante van integrasie deurgaans weggelaat.

Integrale wat r = Sjabloon:Sqrt bevat

rdx=12(xr+a2ln(x+r))
r3dx=14xr3+38a2xr+38a4ln(x+r)
r5dx=16xr5+524a2xr3+516a4xr+516a6ln(x+r)
xrdx=r33
xr3dx=r55
xr2n+1dx=r2n+32n+3
x2rdx=xr34a2xr8a48ln(x+r)
x2r3dx=xr56a2xr324a4xr16a616ln(x+r)
x3rdx=r55a2r33
x3r3dx=r77a2r55
x3r2n+1dx=r2n+52n+5a2r2n+32n+3
x4rdx=x3r36a2xr38+a4xr16+a616ln(x+r)
x4r3dx=x3r58a2xr516+a4xr364+3a6xr128+3a8128ln(x+r)
x5rdx=r772a2r55+a4r33
x5r3dx=r992a2r77+a4r55
x5r2n+1dx=r2n+72n+72a2r2n+52n+5+a4r2n+32n+3
rdxx=raln|a+rx|=raarsinhax
r3dxx=r33+a2ra3ln|a+rx|
r5dxx=r55+a2r33+a4ra5ln|a+rx|
r7dxx=r77+a2r55+a4r33+a6ra7ln|a+rx|
dxr=arsinhxa=ln(x+ra)
dxr3=xa2r
xdxr=r
xdxr3=1r
x2dxr=x2ra22arsinhxa=x2ra22ln(x+ra)
dxxr=1aarsinhax=1aln|a+rx|

Integrale wat s = Sjabloon:Sqrt bevat

Veronderstel x2 > a2 (vir x2 < a2, sien die volgende afdeling):

sdx=12(xsa2ln(x+s))
xsdx=13s3
sdxx=saarccos|ax|
dxs=ln|x+sa|

Hier ln|x+sa|=sgn(x)arcosh|xa|=12ln(x+sxs), waar die positiewe waarde van arcosh|xa| geneem word.

xdxs=s
xdxs3=1s
xdxs5=13s3
xdxs7=15s5
xdxs2n+1=1(2n1)s2n1
x2mdxs2n+1=12n1x2m1s2n1+2m12n1x2m2dxs2n1
x2dxs=xs2+a22ln|x+sa|
x2dxs3=xs+ln|x+sa|
x4dxs=x3s4+38a2xs+38a4ln|x+sa|
x4dxs3=xs2a2xs+32a2ln|x+sa|
x4dxs5=xs13x3s3+ln|x+sa|
x2mdxs2n+1=(1)nm1a2(nm)i=0nm112(m+i)+1(nm1i)x2(m+i)+1s2(m+i)+1(n>m0)
dxs3=1a2xs
dxs5=1a4[xs13x3s3]
dxs7=1a6[xs23x3s3+15x5s5]
dxs9=1a8[xs33x3s3+35x5s517x7s7]
x2dxs5=1a2x33s3
x2dxs7=1a4[13x3s315x5s5]
x2dxs9=1a6[13x3s325x5s5+17x7s7]

Integrale wat u = Sjabloon:Sqrt bevat

udx=12(xu+a2arcsinxa)(|x||a|)
xudx=13u3(|x||a|)
x2udx=x4u3+a28(xu+a2arcsinxa)(|x||a|)
udxx=ualn|a+ux|(|x||a|)
dxu=arcsinxa(|x||a|)
x2dxu=12(xu+a2arcsinxa)(|x||a|)
udx=12(xusgnxarcosh|xa|)(vir |x||a|)
xudx=u(|x||a|)

Integrale wat R = Sjabloon:Sqrt bevat

Veronderstel dat daar 'n p en q bestaan sodat ax2 + bx + c nie tot die uitdrukking px + q2 verneenvoudig kan word nie.

dxR=1aln|2aR+2ax+b|(vir a>0)
dxR=1aarsinh2ax+b4acb2(vir a>04acb2>0)
dxR=1aln|2ax+b|(vir a>04acb2=0)
dxR=1aarcsin2ax+bb24ac(vir a<04acb2<0|2ax+b|<b24ac)
dxR3=4ax+2b(4acb2)R
dxR5=4ax+2b3(4acb2)R(1R2+8a4acb2)
dxR2n+1=2(2n1)(4acb2)(2ax+bR2n1+4a(n1)dxR2n1)
xRdx=Rab2adxR
xR3dx=2bx+4c(4acb2)R
xR2n+1dx=1(2n1)aR2n1b2adxR2n+1
dxxR=1cln|2cR+bx+2cx|,c>0
dxxR=1carsinh(bx+2c|x|4acb2),c<0
dxxR=1carcsin(bx+2c|x|b24ac),c<0,b24ac>0
dxxR=2bx(ax2+bx),c=0
x2Rdx=2ax3b4a2R+3b24ac8a2dxR
dxx2R=Rcxb2cdxxR
Rdx=2ax+b4aR+4acb28adxR
xRdx=R33ab(2ax+b)8a2Rb(4acb2)16a2dxR
x2Rdx=6ax5b24a2R3+5b24ac16a2Rdx
Rxdx=R+b2dxR+cdxxR
Rx2dx=Rx+adxR+b2dxxR
x2dxR3=(2b24ac)x+2bca(4acb2)R+1adxR

Integrale wat S = Sjabloon:Sqrt bevat

Sdx=2S33a
dxS=2Sa
dxxS={2barcoth(Sb)(vir b>0,ax>0)2bartanh(Sb)(vir b>0,ax<0)2barctan(Sb)(vir b<0)
Sxdx={2(Sbarcoth(Sb))(vir b>0,ax>0)2(Sbartanh(Sb))(vir b>0,ax<0)2(Sbarctan(Sb))(vir b<0)
xnSdx=2a(2n+1)(xnSbnxn1Sdx)
xnSdx=2a(2n+3)(xnS3nbxn1Sdx)
1xnSdx=1b(n1)(Sxn1+(n32)adxxn1S)

Verwysings

Sjabloon:Lyste van integrale